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This article presents an extension of the semi-implicit numerical scheme for two-phase flow 
simulation. The extension uses an implicit evaluation of the convective fluxes and thus 
eliminates the material Courant stability restriction. The new algorithm involves a two-step 
approach for the mass and energy equations and a single fully-implicit step for the momentum 
evaluations. Some analysis and accuracy considerations for the scheme are also presented. 
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1. INTRODUCTION 

Complex two-phase flows have been numerically simulated in the nuclear 
industry for over a decade. The major numerical schemes used to analyze the total 
system response of nuclear power plants until recently have been based upon semi- 
implicit finite difference schemes [l-4]. A more implicit numerical scheme called 
SETS [S] has been implemented in the systems code TRAC-PFl [6], RELAPS 
(Reactor Excursion and Leak Analysis Program) is one such semi-implicit systems 
code. The basic guidelines employed in the development of the semi-implicit 
numerical scheme are discussed in Ref. [4]. The resulting semi-implicit scheme has 
the interphase drag, heat transfer, and mass transfer terms evaluated implicitly (in 
linear fashion) to eliminate the small time step restrictions associated with the short 
time constants of the interphase exchange processes. In addition, the terms respon- 
sible for acoustic pressure wave propagation-the convective velocities in the mass 
and energy conservation equations and the pressure gradient in the momentum 
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equations-are evaluated at the new time (n + 1) level. This semi-implicit scheme 
has a time step restricted by the material Courant limit (dt<dx/u,, dt< Ax/u,) 
because the convected fluxes of mass, energy, and momentum are all evaluated with 
old time (n) level values. 

The semi-implicit scheme was designed at a time when there was much emphasis 
on large break loss-of-coolant accident (LOCA) analysis. In these simulations there 
is little need to follow dynamic acoustic wave propagation, except possibly for the 
first few milliseconds. The dynamic material transport of mass and energy through 
the system is important and accuracy alone dictates a time step less than the 
material Courant limit. For this reason there was no incentive to expend the extra 
calculational effort required to evaluate the convective fluxes implicitly, and 
eliminate the material Courant time step stability restriction. As the emphasis has 
expanded to include very slow transients that require hours or days of real time 
simulation, the numerical schemes have been reexamined. If the dynamic 
propagation -of mass and energy is not important, then the convectively fluxed 
variables could be evaluated implicitly to eliminate the material Courant time step 
restriction. This has been the goal in the numerical scheme development described 
in this article. One such prior scheme has been described in the literature [7, 51 and 
we have profited from these works. The present scheme differs from the above in the 
amount of implicitness used for the momentum evaluations. The prior scheme used 
multistep evaluations of both the momentum and energy equations. The present 
scheme uses a two-step evaluation of the mass and energy equations but a single 
fully-implicit step for the momentum equations. The new scheme, referred to as the 
nearly-implicit scheme, has the convective fluxes evaluated implicitly, and hence 
eliminates the material Courant time step stability restriction. During the review 
process for this paper, the authors became aware of the ATHENA system code 
developed in Canada [8]. This two-fluid code is more implicit than all of the prior 
efforts. The convective flux terms are evaluated implicitly in a single step. A com- 
parison for the run times of each of these schemes will be given later. 

If a numerical simulation is for a basically quasi-steady process with slowly-vary- 
ing boundary conditions, this scheme will allow a large time step and still give suf- 
ficiently accurate predictions. It is this class of problems for which the nearly- 
implicit scheme is primarily developed. In addition, it will give a very fast and 
efficient way to establish steady-state initial conditions. If this scheme is used with a 
time step slightly larger than the material Courant limit, the calculation still gives 
accurate simulations for problems with dynamic convection of mass and energy. If a 
time step significantly larger than the material Courant limit is used (5 to 10 times 
larger), dynamic propagation of mass, energy, and void is filtered out by the 
numerical simulation. This point will be expanded upon later. 

Clearly, then, the new solution scheme will not be universally applicable across 
the broad range of reactor transients of interest. Additional work will be required to 
implement automatic controls or to specify detailed guidelines for using the new 
scheme. In any event, the nearly-implicit solution scheme promises to offer substan- 
tial savings in computer time for many transients of interest. 

581/66/l-5 
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Section 2 of this article describes the basic two-fluid equations used in a one- 
dimensional two-phase flow analysis. Section 3 provides a theoretical background 
for the nearly-implicit scheme by examining the effect of implicit solutions and time 
step size on short wavelength behavior. Section 4 describes the nearly-implicit 
scheme implemented in RELAPS and contrasts it with the existing semi-implicit 
scheme. Section 5 considers accuracy limitations of the new scheme. Section 6 
presents the results of three simple test problems used to evaluate the nearly- 
implicit scheme and to compare it to the semi-implicit scheme. Section 7 is a 
summary. 

2. BASIC TWO-FLUID MODEL 

The basic field equations for the two-fluid nonequilibrium model consists of two 
phasic continuity equations, two phasic momentum equations, and two phasic 
energy equations. The equations are recorded in differential form with time and one 
space dimension as independent variables and in terms of time and volume-average 
dependent variables. The development of such equations for the two-phase process 
has been recorded in Ref. [9] and is not repeated here. 

The phasic continuity equations are 

, -g @gPg) +; bgpgug) = rg 

and 

$ (a,p,) + ; (afP,uf) = - rg . 

The phasic momentum equations are 

a0 i au2 ap 
a p B+-agpgA= -a,-+agp,B--acr,p,Fw,u, ggat 2 ax ax 

and 
av, i au; ap 

afpf at + 5 wf ax = - af z + afpfB - afpfFwfvf 

The phasic energy equations are 

(2) 

(3) 

(4) 

(5) 
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and 

+ Qw,+ Qif-rg hEC. (6) 

In Eqs. (1) through (6) the g and f subscripts refer to the gas and liquid phases, 
respectively. The nomenclature is as follows: a is the volume void fraction, p is the 
phasic density, u is the phasic velocity, P is the common pressure, U is the phasic 
internal energy, h is the phasic enthalpy, QW represents the wall heart flux, F, 
represents the wall drag, r is the interphase mass exchange, Qi is the interphase 
heat exchange, Fi is the interphase drag force, and B represents the body forces 
(usually gravity). 

The enthalpies associated with interphase mass transfer r’s in Eqs. (5) and (6) are 
defined in such a way that the interface energy jump conditions at the liquid-vapor 
interface are satisfied. In particular, h,* and h: are chosen to be hi and hr, respec- 
tively, for the case of vaporization and h, and h;, respectively, for the case of con- 
densation. A superscript s denotes a saturation value. The interphase energy trans- 
fer terms Q, and Qir can be expressed as 

Qig=Hig(p- Tg) 

and 

Hi, and Hir are the heat transfer coefficients from the interface, which is assumed to 
be at the saturation condition, to the vapor and liquid phases, respectively. T”, Tgr 
and Tr are the saturation temperature, vapor temperature, and liquid temperature, 
respectively. The interphase vaporization (or condensation) rate is obtained from 
the energy jump condition as 

r = -Qig+ Qif 

fz h,*-h: 

which, upon substitution of Eqs. (7) and (8), becomes 

(9) 

The phase change process which occurs at the interface is envisioned as a process in 
which bulk fluid is heated or cooled to the saturation temperature, and phase 
change occurs at the saturation state. 

In the momentum Eqs. (3) and (4), two terms included in these basic equations 
have not been shown. The virtual mass terms that describe the inertial coupling of 
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the phases in accelerating flows are included but not recorded in Eqs. (3) and (4). 
In addition, the momentum equations include a term (a spatial gradient of the void 
fraction) describing the effects of a transverse gravity head in a horizontal flow 
situation, which has not been recorded in Eqs. (3) and (4). These two terms are not 
of any fundamental significance to the nearly-implicit scheme and for the simplicity 
of this presentation are not discussed in what follows. As the momentum equations 
are fully coupled, these terms cause no complications in the nearly-implicit scheme. 

It has proven useful in the degenerate case of an equal velocity model to use the 
momentum equations as a sum and difference of the liquid and vapor momentum 
equations. Adding Eqs. (3) and (4) gives the resulting sum equation 

- ug P~F,,u, - ufpr Fwrvf. (11) 

Dividing Eq. (4) by alp, and subtracting it from Eq. (3) divided by ctnpg gives the 
resulting difference equation 

(12) 

Equations (11) and (12) are used in the numerical model as momentum 
equations equivalent to Eqs. (3) and (4). 

3. PRELIMINARY ANALYSIS 

In the development of a numerical solution scheme for a system of partial dif- 
ferential equations, the time constants and/or propagation speeds associated with 
the simulated physical processes must be known. If it is desired to accurately follow 
all of the physical phenomena described by the differential equations, then the 
numerical simulation must be carried out with a time step, At, less than the smallest 
time constant of the system and such that the Courant number based upon the 
fastest wave speed is less than one. With this choice for the time step, any stable 
explicit numerical scheme is acceptable; the use of an implicit or semi-implicit 
scheme is a disadvantage because the numerical scheme is unduly complicated. 

A question that naturally arises is whether there is an advantage to be gained by 
using an implicit numerical scheme that is stable for time steps larger than the 
physical time constants, or so large that propagation occurs through more than one 
cell length, Ax, per time step. It is always possible to develop an implicit scheme 
that gives stable calculations for large time steps, but when this approach is used to 
simulate a physical process, the solution may suffer a loss of fidelity. In particular, 



A NEARLY-IMPLICIT TWO-PHASE FLOW MODEL 67 

the physical phenomena with time constants greater than At and the wave 
phenomena with wave speeds less than Ax/At will be adequately simulated, whereas 
the physical phenomena with time constants smaller than At and the wave 
phenomena with wave speeds larger than Ax/At will be lost or filtered out by the 
numerical solution process. Thus, implicit schemes may be advantageous in 
problems where dynamic propagation phenomena are unimportant or the processes 
of interest occur slowly so that large time steps can be used without loss of 
accuracy. 

To illustrate these concepts, consider the simple single equation model 

g++ -a 
z (13) 

for constant propagation speed, U, and relaxation time constant, r. The fully- 
implicit numerical scheme for this model (using a centered spatial approximation) 
is 

(14) 

Assuming that this numerical equation holds in an infinite medium, the exact 
solution for a general Fourier component a; = a,ei(kidx-w”d’) is given by 

l+$+i$sin(kAx) I) a;, (15) 

where k is the wavenumber ( = 27r/A) for a particular Fourier mode of wavelength Iz. 
Consider the solution, Eq. (15), for a time step much larger than the relaxation time 
constant, i.e., for At/z B 1. In this situation, At/z dominates the denominator, and in 
the limit of large At, Eq. (15) reduces to 

a?+‘=0 
J (16) 

for all wavelengths of practical interest. The exact solution of Eq. (13) for this case 
is a periodic wave travelling with speed u and decaying amplitude. 

Equation (16) states that the exact decaying wave solution to the differential 
equation is numerically approximated as the zero solution for large At. This implicit 
scheme when used with a large At (relative to z) gives the correct asymptotic 
solution as t + co, i.e., the steady state solution having all wave propagation 
phenomena damped. 

Now consider Eq. (13) with the right-hand side set to zero for a large At such 
that Ax/At < u. The exact solution in this case is a periodic wave propagating with 
speed u and without decay. For this case the Courant number, u(At/Ax), is large, 
and we again obtain the solution given by Eq. (16) even though the differential 
equation simulated contains no decay mechanism. In this case, the undamped 
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dynamic wave propagation phenomena present in the differential system has been 
filtered out completely by the numerical solution. Here we see in simple fashion a 
characteristic feature of a numerical scheme that has certain wave propagation 
terms evaluated implicitly. If a large time step is used with such a scheme, the 
dynamic wave propagation is filtered out in the numerical simulation. It should 
be noted that if the wavelength is extremely long (small k) such that 
u(dt/dx) sin(k dx) is still much less than one, then these long waves may be 
accurately represented, whereas the short waves are effectively filtered out of the 
calculation. In Table I, the wavelengths at which decay to one-half the initial 
amplitude occurs in 64 time steps are tabulated for a range of Courant numbers (a 
value for dx equal to 0.5 m is assumed). Wavelengths shorter than those tabulated 
will decay even faster. For component sizes typical of light water reactors, it is clear 
that all dynamic wave propagation information is lost at Courant numbers greater 
than 10. 

Summarizing these two examples, it can be stated that for an implicit numerical 
scheme, with the time step taken much larger than a physical time constant 
associated with a particular source term, ony the asymptotic steady-state solution is 
simulated. In addition, if dt is such that the Courant number associated with a par- 
ticular propagation phenomena is much larger than one, then the implicit 
numerical scheme filters out all dynamic wave motion associated with this charac- 
teristic velocity. 

In a complicated system of differential equations, there may be several different 
wave speeds and/or time constants present. In this case, if the time constants and/or 
wave speeds are widely separated, it is possible to design a numerical scheme that is 
partially implicit in the terms responsible for one process. It is then possible to 
obtain quasi-steady or damped/filtered simulation for that particular physical 
phenomenon while obtaining an accurate simulation for processes with larger time 
constants or slower wave propagation speeds. At times this is very desirable. Such a 
partially-implicit numerical scheme can be used to simulate all of the physical 
phenomena present when run with a sufficiently small time step, but it can also be 
run with a larger time step to give damped, quasi-steady solutions for a certain 
phenomenon if it is known a priori that this particular phenomenon has an 
insignificant effect on the total system simulation. The present scheme used in the 
RELAPS thermal-hydraulic system code [4, lo] is based upon the above concepts. 
The interphase transfer processes are evaluated implicitly, as are the terms respon- 
sible for the fast acoustic pressure wave phenomena. In many simulations, the 
energy associated with acoustic phenomena is known a priori to be small, and the 

TABLE I 

Accurate Wavelength versus Courant Number 

U(d?/dX) 0.1 1 10 100 
A (ml 1.00 11.00 110.00 1102.00 
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numerical simulation is carried out with a time step much larger then the acoustic 
Courant limit. When this is done, the acoustic waves and reflections are not 
simulated but are effectively filtered out by the calculations. Since these waves do 
not have a significant effect on the mass and energy inventory, the resulting 
speedup in run time obtained with the larger At is very desirable. 

The present semi-implicit numerical scheme used in the RELAPS code is stable 
for time steps corresponding to a material Courant number less than unity 
(At c Ax/u, where u is of the order of the phasic velocities). This limitation is a 
result of the explicit evaluation of the properties associated with convective 
processes. If the convected properties were evaluated implicitly, then a time step 
corresponding to a material Courant number greater than one could be used. An 
important question relative to calculations for a Courant number greater than unity 
is: What processes will be accurately simulated? The simple example previously 
presented indicated that all dynamically propagating spatial gradients related to 
acoustic, kinematic, and energy propagation will, in this case, be filtered out by the 
numerical process. If the dynamic propagation processes present in the differential 
model are filtered out by the numerical solution process and all the implicit source 
terms assume their asymptotic steady-state values, then the numerical response is 
simply a quasi-steady response to the time-varying boundary conditions and/or 
source terms. If the boundary conditions and prescribed source terms in two-phase 
flows systems (these correspond to heat addition/removal and pumps) vary slowly, 
the quasi-steady response reflected in the numerical simulation will represent the 
dominant physics of interest. In this case, the magnitude of the time step used must 
be appropriate to the quasi-steady phenomena of interest and the rate of variation 
of the boundary/source conditions. 

4. THE NEARLY-IMPLICIT SCHEME 

For problems where the Row is expected to change very slowly with time, it is 
possible to obtain adequate information from an approximate solution based on 
very large time steps. This would be advantageous if a reliable and efficient means 
could be found for solving difference equations treating all terms-phase exchanges, 
pressure propagation, and convection-by implicit differences. Unfortunately, the 
state of the art is less satisfactory here than in the case of semi-implicit (convection- 
explicit) schemes. A fully-implicit scheme for the six-equation model for a lOOcell 
problem would require the solution of 600 coupled algebraic equations. If these 
equations were linearized for a straight pipe, inversion of a block t&diagonal 
600 x 600 matrix with 6 x 6 blocks would be required. The recent reference [8] 
describes a numerical scheme that comes very close to this fully-implicit evaluation 
of all terms. 

To avoid a frontal assault on the problem of solving fully-implicit difference 
schemes, fractional step (sometimes called multiple step) methods have been tried 
[ 111. The equations can be split into fractional steps based upon physical 
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phenomena. This is the basic idea in the development of the nearly-implicit scheme. 
Fractional step methods for two-phase flow problems have been developed in 
Refs [7,5]. These earlier efforts have been used to guide the present development. 
The fractional step method developed here differs from that in Ref. [S] in the 
reduced number of steps used to evaluate the momentum equations. 

The nearly-implicit scheme consists of a first step that solves all six conservation 
equations, treating all interphase exchange processes, the pressure propagation 
process, and the momentum convection process implicity. This step uses the finite 
difference equations recorded below. Figure 1 defines the index structure used for 
the staggered grid. 

The vapor density equation is 

ai,L P;,t ’ ( - ~“g,~) + PI;,~ @;.t ’ - a:,,) 

+ (ciiJ+ , gi;,j+ , v”,,;: 1 - ci;,j bij v”,,f ‘) At/Ax = pg.;’ At 

and the liquid density equation is 

(17) 

where 

aZL pf,L ( “n+l - pCL) - gL @,t ’ -a;,,) 
+ (‘;ti+ 1 btj+ 1 vz:21 -Oi;j@jv;f’) At/Ax= -e,;‘At (18) 

The vapor energy equation is 

- ~?;,~(/3;,~ q,j + P;) v;,f ‘1 At/Ax = [ -(&); H&,,(~+‘- q,t’ 

- H;,L ( ?“;” + 1 - q;itt’)+Q”w,,L At. 1 (20) 

I-1 1 j+l 

FIG. 1. Typical cell structure. 

i+2 
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The liquid energy equation is 

H;,‘( pi” + ’ - T;t; ’ ) + Q& 1 At. 

The sum and difference momentum equations are 

(a,&); <v; + l - Ui)j Axj + (a‘~,); (OF+ ’ - Uf)j Axj 

+ f(q,)y C(v~,J + 2 v;,&$,; l- v;,L) - tu;,,- ‘J2 

-q,,-1 (v;l,t’, - $,L- ,)I At+ f&b$ C&I2 
+ 2 qL t’qt l -~;L)-(YZL-~)~-~~~L--~V~~~~-VZL._,)IA~ 

= -(Pr.-PL-l)n+lAt+ [pi”B-(a,p,)i”F”,,j(u,)i”+l 

- (afPf)JE;n,f,j(Vf)jn + ’ 1 Axj At (22) 

and 

C(v ~+‘-v~)j-(v;+l-v;)j] Axj 

+ f C&gAa,P,)I; ccg:, + 2 $,&,t l- $,J - oJ;,,- A2 
-q,,-1 (v;*t’l- ‘$,L- ,)I At- fC(a,p,)/(a,pF)1,“[(v~L)2 
+ 2 VZL (viy ’ -~)~L)-(v~L-~)~-~vIL--~vZ~~~-V;~L_~)IA~ 

=-C(P~-P~)I(P~PP)I~(PL-PL-~)~+‘~~-C~~~,~(V~)~~+~~~~~,~(~~)~+~ 
+ (pFi)y(Vg-Uf)j’+ ‘1 AXjAt. (23) 

In the above difference equations, a superposed dot denotes a donor cell variable, 
and a tilde value denotes an intermediate variable that will be reevaluated on the 
second step. The variables c+ i, p + l, and p,” + ’ are obtained from a linearized 
state equation as functions of (&+ l, P”+ ‘), (&+ l, P”+ ‘), and Pn+‘, respectively. 

These finite difference equations are exactly those solved in the semi-implicit 
scheme, with one major change. The convective terms in the momentum Eqs. (22) 
and (23) are evaluated implicitly (in a linearized form) instead of in an explicit 
donored fashion as is done in the semi-implicit scheme. 

Although this additional implicitness involves only the momentum convective 
terms, it has a large impact on the algebraic solution algorithm in the first step. In 
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the semi-implicit scheme, Eqs. (17) through (21) can be solved locally to give a 
single equation of the form 

P;+ ’ = A u;,i’: , + B u;,j’ ’ + C ~;i’+~ + D o&+ 1 + E (24) 

for pressure where A, B, C, D, and E contain old time variables only (see Fig. 1 for 
cell indexes). 

In the semi-implicit scheme, the momentum equations can also be solved locally 
to obtain 

u;j+’ = B’(P;+’ - P;:“1) + D’ (26) 

where A’, B’, C’, and D’ again contain only n level variables. If the momentum 
Eqs. (25) and (26) are used to eliminate n + 1 level velocities from Eq. (24), we get 
the normal pressure equation used in the semi-implicit scheme to obtain all the 
n + 1 pressures. For a lOO-cell straight pipe problem, this results in a 100 x 100 tri- 
diagonal matrix system to solve for all the P”+ ‘. 

In the new scheme, because the momentum flux terms are implicit, the momen- 
tum Eqs. (22) and (23) cannot be locally solved to get Eqs. (25) and (26). The con- 
vective terms bring in n + 1 level upstream and downstream velocities. Eq. (17) 
through (21) can still be used to obtain Eq. (24). Equation (24) is then used to 
eliminate the n + 1 level pressure terms from Eqs. (22) and (23). A coupled pair of 
momentum equations involving only n + 1 level velocities is obtained. Because of 
the n + 1 level flux terms, this is a globally coupled system. For a straight pipe of 
100 junctions, a block tri-diagonal matrix system 200 x 200 with 2 x 2 blocks is 
obtained. This system is solved using a sparse matrix solution algorithm. Once the 
u;+’ and u;+l solution is obtained, P”+ ’ is obtained by back substitution into 
Eq. (24). Using Eqs. (17) through (21), intermediate/provisional n + 1 values for clg, 
U,, and Ut, denoted by “;+ l, e+ I, and @+ ‘, can also be obtained. (By way of 
contrast, this single step replaces three steps used in the SETS scheme [5]-the 
pre-prediction step for velocities, the velocity convection stabilization step, and the 
semi-implicit step involving implicit pressures.) 

The second step in the nearly-implicit scheme is used to stabilize the convective 
terms in the mass and energy balance equations. This step uses the final n + 1 level 
velocities from the first step along with the interphase exchange terms resulting 
from the first step, i.e., the interphase heat and mass exchanges for step 2 are 
calculated using P”+ I, q+ I, and &+ r from step 1. The phasic continuity and 
energy equations in this second step have the fluxed variables evaluated at the n + 1 
time level, i.e., implicity as compared to their explicit evaluation in the first step. 
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The vapor density equation is 

(~,P,K’ 1 - (a&& + C(+&;: 1 u;j+: I- (sip);;’ v;,i”l At/Ax 
=p”+‘At g,L . 

The liquid density equation is 

(27) 

In these continuity equations, the mass exchange c+ 1 is evaluated using the 
provisional values from the first step [see Eq. (19)]. 

The vapor energy equation is given by 

(%Pg Up);+’ - (agpg U,)“, + [(abU)ij+,‘, u;r,JJ 1 - (abU);,T 1 uf,j”] At/Ax 

= - P;@;l,; ’ - a;,,) - P;(ci;,j+ 1 u;,;j, - ciij II;,; ‘) At/Ax 

1 At. 

The liquid energy equation is given by 

(wWX.+ ’ - (a,p,Uf); + C(aPU);fj+,‘, u~j++‘~ - (aiU);f ’ u;fi”l At/Ax 

(29) 

(30) 

This second step uses the mass and energy balance equations only. If the structure 
of Eqs. (27) through (30) is examined, it is seen that each equation only involves 
one unknown variable: Eq. (27)-(ap);+‘, Eq. (28F(ap);+‘, Eq. (29b(apU)X+‘, 
and Eq. (30)-(apU);+‘. 

This is because the new time velocities, u;+ ’ and u; + l, are known from step 1 
and provisional n + 1 values from step 1 are used in the exchange terms. Hence each 
equation is uncoupled from the other and can be solved independently. In addition, 
the two equations involving the gas phase, Eqs. (27) and (29), have the same struc- 
tural form for the convective terms; i.e., each equation convects with velocity u; + l. 
The matrix multiplying the unknown new time variable in Eq. (27) is decomposed 
only once, and then this decomposition is used with different right-hand sides to 
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solve both Eqs. (27) and (29). Hence for a straight pipe problem of 100 cells, only 
one 100 x 100 tri-diagonal system must be decomposed to obtain (ap);+’ and 
(apU);+‘. In like manner, the liquid phase Eqs. (28) and (30) have the same struc- 
ture and require only one decomposition to be carried out to solve both equation 
sets, giving (ap);+’ and (apU);+‘. 

With the above four new variables known, we obtain Uz+ i, U;+ i, and a;+ l as 

U;+‘=(apU);+‘/(ap)X+‘, 

U ;+’ = (apU);+‘/(ap);+‘, 

(31) 

(32) 

and 

a;+‘=(ap);+‘/p;+‘, (33) 

where p; + ’ is the liquid density calculated from the linearized state relationship 
using U;+’ and P”+l. If any phase vanishes, so that (ap)“+’ equals zero, the 
provisional n + 1 value of the corresponding variable is used to avoid the zero 
divisor in Eqs. (31) and (32). Equation (33) was chosen to obtain a;+ 1 because the 
liquid phase is nearly incompressible, and less void error is expected using the 
liquid mass balance. 

This second step stabilizes the convective terms in the mass and energy 
equations, and it does so with very little computational effort because of the frac- 
tional step nature of the scheme. A detailed comparison of the calculation times for 
the nearly-implicit method, the SETS method, and the recently described method 
used in the ATHENA code will be presented in Section 6. 

An observation concerning steady state should be noted. In steady state, the dif- 
ference between n + 1 level variables and n level variables disappears, and the 
nearly-implicit scheme gives the same solution as the semi-implicit scheme, except 
for minor variations caused by the momentum flux terms. The momentum flux 
terms use a donor cell formulation in the semi-implicit scheme, whereas the nearly- 
implicit scheme uses a centered formulation. In our experience, the difference at 
steady state has been less than 1%. 

5. SOME ACCURACY CONSIDERATIONS 

The first step of the nearly-implicit scheme has an accuracy very close to that of 
the semi-implicit scheme. The only difference between the two is the implicitly 
evaluated momentum convective terms. 

The accuracy of the second step will be examined in this section, using the simple 
model of Eq. (13). This model is considered for a numerical scheme parallel to that 
used for a mass or energy equation in the nearly-implicit scheme. Consider a 
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scheme in which the source terms are evaluated implicitly on the first step and the 
convective terms are evaluated implicitly on the second step: First step: 

(rjy+l 
J -“:+~(a:,,+)= -.+$+I. 

Second step: 

Assuming an infinite medium and a general Fourier solution component, the first 
step gives for 5; + l 

z(l+1- 
1 - i(u dt/dx) sin(k dx) 

J - 1 + At/T 1 a? 
I’ 

The second step gives the final Fourier solution component a; + ’ 

a’t+l- 
a?-(At/z)Z;+’ 

J - 1 + i(u At/Ax) sin(k Ax) 

(36) 

(37) 

or 

[ 0 1 _ & 1 - i(u At/Ax) sin@ Ax) 

aV+l= z 1 •t At/z 
J 1 + i(u At/Ax) sin(k Ax) ‘I 

aj”. (38) 

Equation (38) yields an amplification factor of absolute value less than unity for 
any time step; hence the scheme is unconditionally stable. For large times steps 
such that At/z% 1 and (u At/Ax) sin(k Ax) > 1 (i.e., both are large but 
At/z 9 (u At/Ax) sin(k Ax)), Eq. (38) reduces to 

a’l+‘xa? 
J I’ (39) 

The implicit two-step method, Eqs. (34) and (35), gives a solution for a;+ 1 that is 
basically unchanged from that at the nth time level. Hence, although the scheme in 
Eqs. (34) and (35) is unconditionally stable, it is extremely inaccurate for large time 
steps. For large time steps the model [Eq. (13)] has solutions that decay to zero. 

The source of the inaccuracy is easily seen from an examination of Eqs. (36) and 
(37). Equation (36) shows that the provisional new time value 5;’ ’ is 
approximately zero. This is the proper asymptotic large-time value and is attained 
because the first step has the source term evaluated implicitly. The second step, 
Eq. (37) now magnifies small r5,7 + ’ and gives a; + ’ N a;. The magnification in the 
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second step is due to the explicit evaluation of the source term (corresponding to 
the interphase mass and heat exchange terms) in the second step. This “frozen” 
evaluation of the exchange process causes the second step to take place as if there 
were no feedback between the mass transfer and convective process. Thus, the 
implicit convective process in the second step can give a resulting solution that has 
a very inaccurate calculation for the mass transfer. This inaccuracy will be seen in 
Section 6 with a specific test problem. The potential for inaccuracies in fractional 
step methods has been previously mentioned (see Ref. [12]). 

6. MODEL DEVELOPMENT TEST PROBLEMS 

This section describes three simple problems that were used to give a preliminary 
indication of the general features, both positive and negative, of the nearly-implicit 
scheme. 

The format for presentation of each problem will be (a) description, (b) purpose 
of calculation, (c) results, and (d) conclusions. Each problem was run using 
steam/water properties for the state relationships. 

6.1. Problem 1: Water Faucet 

This is a conceptual problem using a straight vertical pipe of 12 volumes (each 
1 m in length). All profiles are initially uniform, with a liquid velocity of 10 m/s, a 
vapor velocity of 0 m/s, a pressure of 1 x lo6 Pa, and a vapor void fraction of 0.205. 
The inlet boundary conditions keep the inlet velocities and void fraction at their 
initial values. The calculation is carried out until a steady flow is attained. 

This problem was run with the interphase exhange of mass set to zero and zero 
interphase drag. For this situation, the problem has the analytical steady-state 
solution developed below. This analytical solution was first used as a code test 
problem in Ref. [ 131. 

At this pressure the vapor density is 0.0056 times the liquid density; therefore, the 
pressure gradient in the vapor (and hence liquid) is approximately zero. With this 
uniform pressure, the steady-state liquid momentum equation reduces to 

auf 
WfUf x = EfPf g (40) 

which can be directly integrated from the inlet to an arbitrary x (measured from the 
inlet) to obtain 

tPf”f Ix = tPfv: Iinlet + Pf &Zx- (41) 

Since the liquid is nearly incompressible, Eq. (41) gives the liquid velocity at sec- 
tion x. The steady-state mass balance for the liquid gives 

abfvf) = o 

ax (42) 



A NEARLY-IMPLICIT TWO-PHASE FLOW MODEL 77 

or 

(43) 

If ug equals zero and the liquid and vapor entropies remain fixed at their initial 
values, then Eqs. (41) and (43) give the exact steady-state solution. An examination 
of Eq. (41) shows that the liquid velocity will increase down the pipe because of the 
gravity head. The increasing velocity, because of Eq. (42), leads to a contraction of 
the cross-section area (i.e., a decreasing void profile down the pipe). This steady- 
state necking/contracting profile is dynamically approached by means of a void 
fraction wave propagating down the pipe. The major purpose of this test problem 
was to show how the nearly-implicit scheme filters out dynamic kinematic waves 
when run with a time step larger than the material Courant time step. 

A base case was run with the semi-implicit scheme using a time step dt = 0.025 s, 
which is approximately one-half the material Courant limit. The void fraction as a 
function of time is shown in Fig. 2 for the top five cells. This figure shows the 
dynamic propagation of the void profile down the pipe until the wave has com- 
pletely passed out of the pipe and the steady-state profile remains. This semi- 
implicit simulation took 84 steps to reach steady state. 

The same problem was then run using the nearly-implicit scheme. This 
simulation was carried out with a time step At = 10 s, which is - 150 times the 
material Courant limit. The final steady state is also shown in Fig. 2, and it is the 
same as that for the semi-implicit scheme. The nearly-implicit simulation took seven 
steps to reach steady state. The nearly-implicit scheme reached steady state 5.9 
times faster (CPU time) than the semi-implicit scheme. 

The grind time for the nearly-implicit scheme is - 0.0024 CPU s/cell/time step on 
the CDC 176. This is - 1.6 times the grind time of the semi-implicit scheme. This 
grind time increase is characteristic of all problems. It is caused by the larger matrix 
solution required for the nearly-implicit velocity calculation and the additional 
matrix solutions required in the second implicit convective step. 

The computational efficiency of the nearly-implicit scheme can easily be com- 
pared with the two other Courant violating numerical schemes. The computational 
efficiency for the SETS scheme [S] and the scheme used in ATHENA [S] is taken 
from Ref. [S]. All quoted node cycle times, or CPU time/time step/node, are for the 
CDC Cyber 175.’ For straight pipe test problems, the node cycle times are (i) 
0.0060 s for the nearly-implicit scheme, (ii) 0.0060 s for the SETS scheme, and (iii) 
0,0095 s for the ATHENA scheme.* It should be noted that the SETS scheme is the 

’ In some cases, a conversion from run times reported on a CDC Cyber 176 was needed. The CDC 
Cyber 175 is approximately 2.5 times slower than the CDC Cyber 176 [S]. This conversion factor was 
used whenever necessary. 

*In Ref. [8], two different straight pipe test problems were run, and this node cycle time is the 
average for these two test cases. 
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Vapor void traction 

FIG. 2. Transient vapor void profile. 

least implicit of the three schemes and the ATHENA scheme is the most implicit. 
The nearly-implicit scheme and the SETS scheme have comparable node cycle 
times. The ATHENA scheme has a somewhat larger node cycle time. Presumably, 
this is due to the larger size blocks that appear in the block triangular matrix that 
must be decomposed. 

Both the semi-implicit and nearly-implicit runs reached a steady state that was 
within 1% of the approximate analytical solution developed above. 

The filteriing characteristic of the nearly-implicit scheme is clearly evident in this 
calculation. As shown in Fig.2, the semi-implicit calculation uses a time step small 
enough to follow the dynamic motion of the void fraction profile as it propagates 
down the pipe. 

The nearly-implicit scheme when used with the large time step above gave a void 
profile that after one step was within 3 % of the steady state profile in every cell; i.e., 
no dynamic propagation was calculated but only the steady-state profile. This 
characteristic of an implicit scheme is consistent with the earlier theoretical model 
analysis in Section 3. 

6.2. Problem 2: Heated Pipe 

This simulation used a straight horizontal pipe of 12 volumes. The pipe inlet 
boundary conditions consisted of an influx of pure liquid with a flow rate of 
0.43907 kg/s at saturation conditions with a temperature of 530 K. The pipe wall 
was simulated with 12 heat slabs each with six temperatures nodes initially also at 
530 K. The outside of the pipe was subjected to a heat flux ramp that went from 0 
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FIG. 3. Vapor void fraction at cell 12-ramp heat flux. 

to 3 x lo5 W/m2 in 1 s and then remained constant. This external wall heat flux 
caused the pure liquid to boil as it flowed down the pipe. The transient boiling 
eventually gave rise to a steady void profile. The total pipe length was 0.762 m, with 
an outside diameter of 0.025 m. 

The purpose of this simulation was to show that if dynamic propagation effects 
are not significant, then the nearly-implicit scheme can give reasonable simulations 
of the system as it responds to slowly changing boundary conditions. The heat sup- 
plied in this problem gave rise to an equivalent wall heat flux source in the 
hydrodynamic solution. 

As in Problem 1, a base case was run using the semi-implicit scheme. This was 
used as a reference solution to which the nearly-implicit calculation was compared. 
Figure 3 shows a comparison of the vapor void fraction calculated in the last cell in 
the pipe by the two different schemes. Both simulations reach the same steady state 
after - 2 s. The nearly-implicit scheme was run with At = 0.1 s, giving a time step 
that was form two to three times the material Courant limit. The semi-implicit 
scheme was run using a At that was from three-fourths to one time the material 
Courant limit. To calculate 3 s of simulated time the semi-implicit scheme took 111 
steps. The nearly-implicit scheme took 30 steps. The nearly-implicit scheme reached 
steady state in about half the computer time required by the semi-implicit scheme. 

The vapor void fraction prolife for the nearly-implicit scheme shows the same 
trend as the reference case, and it remains within 5% of the semi-implicit curve, 
though always below it. Similar agreement was seen for the velocities. 

581/66/l-6 
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The nearly-implicit scheme was able to accurately calculate the transient vapor 
void fraction and velocity profiles caused by an external heat flux. This shows that 
an implicit scheme can be used to efficiently simulate slow transients. 

A remark concerning the run time comparisons between the two schemes should 
be made. In both Problem 1 and Problem 2, the pipes were composed of only a few 
(12) cells. In system-type calculations the number of cells is greatly increased. It is 
expected that the semi-implicit scheme, being limited by a material Courant number 
of one, will run even longer relative to the nearly-implicit scheme in these problems 
because of the increased transport time for flow around the system. In these short 
pipe problems the time required by the semi-implicit scheme is minimized because 
of the short transport time for flow through the pipe. 

6.3. Problem 3: Fast Transient Blowdown 

This problem was a straight pipe blowdown of a low-quality mixture. The initial 
conditions were saturated fluid at 7 x lo6 Pa, with a vapor void fraction of 
4.8 x lo-*. The pipe consisted of 12 cells and was 2.46 m long. It was blown down 
to atmospheric pressure. 

The purpose of the simulation was to show the inefficiency of the nearly-implicit 
scheme for fast transients. 

This calculation, as in the previous problems, was run using both semi-implicit 
and nearly-implicit schemes. Both runs gave similar pressure and void transients. 

Figure 4 shows the pressure transient in volume 6 for both schemes. Both 
simulations were controlled by the built-in mass error time step control in 
RELAPS/MOD2. Both schemes took 0.2 s to blow down to atmospheric pressure. 

I I I I 

- - - Semi-implicit 

- Nearlyimplicit - 

2- 

Time(s) 

FIG. 4. Pressure plots in volume 6 for the fast transient flowdown problem. 



A NEARLY-IMPLICIT TWO-PHASE FLOW MODEL 81 

The semi-implicit scheme took 120 steps to blow down. The nearly-implicit scheme 
took 41 steps to blow down. The nearly-implicit simulation took about half the 
computer time required by the semi-implicit simulation. 

A brief comment concerning the semi-implicit results is in order. The blowdown 
proceeds as expected except for a flattening of the pressure profile around 0.06 s. 
This is due to the increased mass transfer rate between the phases when the 
depressurization wave reaches the closed end of the pipe. A convergence study with 
the semi-implicit scheme clearly shows this to be physical and not numerical. 
Although the nearly-implicit scheme took time steps on the average three times 
larger than those of the semi-implicit scheme, the plots clearly show inaccuracies 
associated with these larger times steps. A convergence study using the nearly- 
implicit scheme shows that for smaller time steps, the nearly-implicit scheme con- 
verges to the semi-implicit scheme result. The inaccuracies exhibited by the nearly- 
implicit scheme using the larger time step clearly show that this scheme is inefficient 
for the simulation of this fast transient. In this simulation, the important point is to 
accurately calculate the mass transfer rates as these govern the depressurization. 
Although the nearly-implicit scheme has a Courant violating time step with no 
stability problem the mass transfer rate is not accurately simulated at these larger 
time steps. 

7. CONCLUSIONS 

This paper presents a description and test results for the new nearly-implicit 
hydrodynamic numerical scheme that has been implemented in the RELAPS ther- 
mal-hydraulic system code. Some specific conclusions obtained are as follows: 

1. Preliminary analysis indicates that the material Courant limit can be 
violated using the nearly-implicit scheme for cases of slowly-varying, quasi-steady 
phenomena. 

2. The nearly-implicit method requires less computational time than a fully- 
implicit method. 

3. The explicit evaluation of the source term in the second step results in 
some inaccuracies. An improved time step controller could be developed to 
minimize these inaccuracies. Methods of making the source term implicit in the 
second step may mitigate these inaccuracies. 

4. The accurate simulation of the steady state and transient void, velocity, 
and temperature profiles in the heated pipe problem shows that the scheme can be 
used to efficiently simulate slow transients. 

5. The semi-implicit scheme is a more efficient scheme to use for the 
simulation of fast transients, as seen from the fast transient blowdown problem. 
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